Низковольтный преобразователь напряжения
Дата: 02.12.2008
Раздел: Электроника


Преобразователь напряжения
Пара схем повышающих стабилизированных преобразователей напряжения, которые можно использовать для питания различных гаджетов.





Первая схема была опубликована в журнале "Радио" №1 за 2000 г., автор В. Зайцев, г. Санкт-Петербург.



Ниже приведено немного сокращённое описание данной схемы. Чуть подробнее можно найти, например, здесь.

"Несложный стабилизированный преобразователь, позволяет получить напряжение 5 В при токе нагрузки до 120 мА. Его входное напряжение может находиться в пределах 2...3,5 В (два гальванических элемента). КПД при входном напряжении 3 В и максимальном токе нагрузки — приблизительно 75 %.

На транзисторе VT2 собран блокинг-генератор. Обмотка I трансформатора Т1 выполняет также функцию накопительного дросселя, а с обмотки II на базу транзистора VT2 поступает сигнал положительной обратной связи. Импульсы, возникающие на коллекторе этого транзистора, через диод VD1 заряжают конденсаторы С4, С5, напряжение на которых и является выходным. Оно зависит от частоты повторения и скважности импульсов блокинггенератора, которые, в свою очередь, зависят от коллекторного тока транзистopa VT1, перезаряжающего конденсатор СЗ в интервалах между импульсами.

После того, как на блокинг-генератор подано напряжение питания, по мере зарядки конденсатора С2 через резистор R1 увеличиваются коллекторный ток транзистора VT1, частота генерируемых импульсов и выходное напряжение преобразователя. Но как только последнее превысит сумму напряжений стабилизации стабилитрона VD2 и открывания транзистора VT3, часть тока, протекавшего через резистор R1 и базу транзистора VT1, ответвится в коллекторную цепь открывшегося транзистора VT3. Это приведет к уменьшению частоты импульсов. Таким образом выходное напряжение будет стабилизировано. Подстроечный резистор R3 позволяет установить его равным 5 В.

Транзистор VT2 — КТ819 с любым буквенным индексом, КТ805А или КТ817 также с любым индексом. В последнем случае выходная мощность преобразователя будет немного меньше. КПД устройства повысится, если в качестве VD1 применить германиевый диод Д310. Трансформатор изготовлен из дросселя ДПМ-1,0 индуктивностью 51 мкГн. Имеющаяся на нем обмотка использована в качестве первичной.


Поверх нее намотана обмотка обратной связи (II) из 14 витков провода диаметром 0,31 мм в эмалевой изоляции. Конденсатор СЗ должен быть металлопленочным серий К71-К78. Керамический конденсатор здесь нежелателен из-за низкой температурной стабильности емкости. К типам остальных деталей устройство некритично.


Несколько образцов, собранных автором, не потребовали никакого налаживания, кроме точной установки выходного напряжения.
"

Вообще говоря, с помощью данной схемы можно получить и большие выходные токи. Примерно до 1 А. КПД при этом получается около 65...70%. Для этого нужно использовать более мощный дроссель Т1, диод VD1, а также желательно транзистор VT2 заменить на более современный, который бы имел больший коэффициент передачи тока базы, чем КТ819. Однако, применять составные транзисторы не стоит, т.к. у них слишком большое напряжение между коллектором и эмиттером в открытом состоянии, неприемлемое для низковольтных устройств.

Второй плюс данной схемы в том, что трансформатор Т1 может быть изготовлен очень легко. Автор рекомендовал использовать отечественные дроссели типа ДПМ. Однако, сейчас появилось достаточно много импортных индуктивностей, которые намотаны на сердечниках в виде гантели (катушки) и домотать десяток-другой витков на такую катушку труда не составляет никакого.

Подобная схема, например, была использована в качестве дополнительного маломощного стабилизатора в первых моделях преобразователя "Вампирчик", схема одного их которых приведена здесь. Она запускалась при напряжении около 1.8В, потребление тока без нагрузки было меньше 10 мА.

Вторая схема построена по тому же принципу, что и первая, но выполнена на более современной элементной базе (полевом транзисторе в качестве ключа и диоде Шоттки). Источник и автор схемы мне неизвестен, она была найдена в Интернете. В отличие от первой, я её не собирал, но работать должна.


Принцип действия схемы достаточно прост. При подаче питания ключ VT1 открывается и через первичную обмотку начинает течь возрастающий ток, который также на вторичной обмотке вызывает появление положительного напряжения, ещё больше открывающего VT1.

Когда ток первичной обмотки возрастёт до уровня насыщения сердечника трансформатора, то на его вторичной обмотке напряжение сменит полярность и теперь уже будет закрывать ключ VT1. При закрывании полевого транзистора, на его стоке формируется импульс повышенного напряжения, который через диод VD1 "стекает" в конденсатор С1, заряжая его.

Этот процесс будет продолжаться до тех пор, пока напряжение на конденсаторе С1 не вырастет до напряжения пробоя стабилитрона VD3 плюс прямого падения на светодиоде VD2, плюс около 0.5В на переходе БЭ транзистора VT2. При этом транзистор VT2 открывается и напряжение на затворе полевика VT1 уже не может подняться выше порога, необходимого для его открывания. Таким образом обеспечивается стабилизация выходного напряжения.

При повторении схемы следует учесть несколько моментов.
1. Полевой транзистор обязательно должен быть с т.н. "логическим уровнем открывания", т.е. его максимальное напряжение открывания должно быть не более 1В. "Обычные" полевики имеют напряжение открывания около 4В.

2. Дроссель, как уже говорилось выше удобно изготавливать из индуктивностей на гантелеобразных сердечниках. Для этого проще всего взять готовый дроссель, индуктивностью приблизительно 3.3...22 мкГн и рабочим (по перегреву) током равным, как минимум, 2*Iвых*(Uвых/Uвх) . А лучше и это минимальное значение хотя бы удвоить.

3. В качестве VD1 желательно, но не обязательно использовать диод Шоттки. Он позволяет снизить потери за счёт меньшего падения напряжения в открытом состоянии, а также имеет большую скорость переключения, что особенно важно в повышающих преобразователях.

Подобные простые схемы позволяют во многих случаях обойтись без использования специализированных микросхем, что удешевляет схему и делает её более легкой для повторения.

Носов Николай. 02.12.08





Реклама:



бет бум официальный   calmandveggi.ru



Это статья с сайта: Всё о мобильной энергии - солнечные батареи и другая электроника для туристов
https://www.mobipower.ru

URL этой статьи:
https://www.mobipower.ru/modules.php?name=News&file=article&sid=173