Всё о мобильной энергии, солнечных батарея, ветряках и другой электроники Обсуждение солнечных батарей, вертяков, генераторов и другой электроники
 
  Регистрация | Войти На главную Добавить статью Форум Поиск  RSS Наш твиттер Контакты 28 июля 2021, Среда  
MobiPower.ru
 О сайте
 Новости
 солнце
 термоэлектричество
 механика
 аккумуляторы
 освещение
 электроника
 прочее (экзотика)
 новинки рынка
 Сделай сам
 Обзоры и тесты
 Библиотека
 Форум
 Ссылки
 Контакты

Новости на e-mail
Подписаться на e-mail рассылку новых статей сайта Mobipower.ru



Новое на форуме

Контроллер для ветряка
Автор: nik34
07.05.2021 в 21:26

Батарея на крыше авто
Автор: LeonidS
26.02.2021 в 14:40

Техническое обсуждение ВЦ7 (+альт. прошивка)
Автор: nik34
09.01.2021 в 23:46

Топливные элементы
Автор: plumber27
24.11.2020 в 06:51

АКБ греется
Автор: nik34
15.10.2020 в 23:15

Сборка батареи для электромотоцикла
Автор: nik34
11.10.2020 в 10:54

Преобразователь с 12В на 8,4В
Автор: nik34
08.07.2020 в 11:26

Неужели ОН и правда столько жрет?
Автор: Grao
16.06.2020 в 15:45

Сол-1000 - модульная и масштабируемая электростанция
Автор: nik34
31.05.2020 в 13:39

Модульный накопитель
Автор: nik34
29.05.2020 в 22:56

Перейти на форум

Сейчас на сайте
0 человек

в т.ч. гостей:
пользователей:

Всего: 1185

Это может быть полезно



Горячая фотоячейка тянет электроны из коктейля света и жара


Разместил 28.12.2010   nik34

Прочее (экзотика) next прислал:


 Представлен ещё один вариант преобразователя солнечного излучения в электричество.




  
Поделиться этой страницей в:




   Крошечный образец преобразователя сияет в центре вакуумной камеры. Опыт доказал, что новый принцип конверсии света в электричество действительно работает, но над его шлифовкой изобретателям ещё придётся потрудиться (фото Nicholas A. Melosh).

   Для эффективного получения энергии от Солнца хорошо бы сплавить две технологии. О перспективах новации догадаться нетрудно. Но для этого каким-то чудом нужно совместить в одном материале противоречивые свойства. И что ещё труднее – заставить работать в одной упряжке разнородные физические процессы. Решение этой головоломки было найдено на днях.

   Николас Мелош (Nicholas A. Melosh) и его коллеги из Стэнфорда представили разработку под названием "Фотонно-расширенная термоионная эмиссия" (photon-enhanced thermionic emission — PETE). В силу относительной дешевизны материалов и высокой эффективности процесса она потенциально может поспорить в цене получаемой энергии с нефтью, — сообщают американцы.

   Сейчас существуют два магистральных направления в преобразовании солнечного света в электричество. Первый — тепловой, при котором зеркала-концентраторы нагревают теплоноситель, передающий энергию паровой турбине или стирлингу. Второй — "квантовый", то есть имеется в виду прямая конверсия фотонов в ток при помощи полупроводника. Объединение этих принципов в одном устройстве заманчиво с точки зрения КПД, но до сих пор оно было несбыточной мечтой.

 

   "Это действительно концептуальный прорыв, новый процесс преобразования энергии, а не только новый материал или несколько иные настройки, – заявил Мелош в пресс-релизе Стэнфорда. – Это принципиально отличный способ, каким вы можете собирать урожай энергии". За учёным видна вакуумная камера, в которой исследователи испытывали прибор (фото L. A. Cicero).

   Поясним. Проблема заключается в принципиально разных температурах, при которых трудятся упомянутые выше устройства. КПД тепловых машин тем выше, чем горячее их зона нагрева ("печка", какого бы типа она ни была), а вот фотогальванические ячейки, напротив, решительно отказываются работать при перегреве.

   Неудивительно, что в весьма перспективных фотоэлектрических панелях с высокой степенью концентрации света одним из важнейших элементов является обширный радиатор, не позволяющий полупроводнику "изжариться". А если всё же попробовать снимать бросовое тепло с фотоэлектрической ячейки — толку от такой добавки окажется очень немного.



   В зависимости от температуры в новом материале могут доминировать фотоэмиссия электронов, эмиссия типа PETE или термоэмиссия. Это в теории. Однако на практике зона с крайне высокими температурами недостижима, а вот умеренно горячая "полоса" (несколько сот градусов) – идеальна для нового прибора (иллюстрация Jared W. Schwede et al./Nature Materials).

   В PETE диковинные фототермоэлектрические ячейки работают при очень высокой температуре. К примеру, если кремниевые элементы совсем сдаются при нагреве до 100 °C, новый преобразователь превосходно действует более чем при 200 градусах и не откажется от дальнейшего нагрева. Даже 800 °C, достигаемые в фокусе зеркал-концентраторов, для нового преобразователя — здоровая рабочая обстановка.

   Основа данных чудо-пластинок — нитрид галлия. Ранее он показал, что готов работать при приличном перегреве в различных типах полупроводниковых устройств, но в данном случае дело не в замене вещества. Сам принцип работы новых ячеек — свеж.

   Его, несмотря на похожее название, не следует путать с банальной термофотоэлектрической генерацией, в которой энергия претерпевает ряд последовательных преобразований. В новом проекте речь идёт о "твердотельной" выработке тока при одновременном захвате и света и "жара", поставляемых солнечными лучами.

   Для такого трюка физики покрыли нитрид галлия тонким слоем цезия, получив катод, в котором происходит термоэмиссия фотовозбуждённых электронов. Красота метода в том, что именно суммирование подпитки от падающих фотонов и от тепла горячего полупроводника позволяет электронам в нём перепрыгивать запрещённую зону и создавать ток в нагрузке.



   a – энергетическая диаграмма PETE. Фотовозбуждение увеличивает электронное население зоны проводимости, далее увеличивая и термический электронный ток. b – общая схема прибора (иллюстрация Jared W. Schwede et al./Nature Materials).

   Авторы системы построили опытный образец, показав, что мощность ячейки положительно зависит от её температуры, а значит, термическая составляющая действительно подключается к фотоэффекту. Но на этом достоинства изобретения не заканчиваются.

   Уже один обработанный полупроводник позволяет, как мы видим, с пользой поглощать значительную долю падающего света. А ведь в силу высокой температуры прибора к нему ещё можно пристыковать теплообменник с жидкостью, которая бы переносила излишки тепла к классической тепловой машине.

   Николас Мелош посчитал, что идеализированная пластинка PETE в одиночку может достичь КПД около 40-50% (в эксперименте с первым реальным образом, правда, показатель был заметно ниже). А уж будучи дополненной тепловой машиной, такая установка способна довести свой суммарный КПД до 55-60%.

   Это уже заметно выше параметра любых известных систем: доведённая до ума батарея PETE могла бы обойти по эффективности и лучшие однопереходные и рекордные трёхпереходные фотоэлектрические панели, а также самые эффективные тепловые преобразователи солнечного света.




   a – схема потоков энергии в комбинированной (тандемной) системе. b – КПД PETE-системы (отложен по вертикали) в зависимости от величины запрещённой зоны исходного полупроводника (по горизонтали, электрон-вольты). Синяя кривая – фотоячейка PETE сама по себе, красная – она же, дополненная тепловой машиной (то есть тандем) (иллюстрация Jared W. Schwede et al./Nature Materials).

   Сейчас группа Мелоша изучает другие материалы, которые можно было бы применить в PETE-ячейке. В частности, учёные намерены испытать в такой роли арсенид галлия.

   Изобретатели отмечают, что поскольку лучше всего такие батареи будут работать под лучами от концентраторов, на каждую установку потребуется совсем небольшое количество полупроводника, что должно сделать систему сравнительно дешёвой и конкурентоспособной.

   Николас полагает: PETE-пластинки даже можно будет интегрировать в уже существующие тепловые солнечные установки, обойдясь минимальным вмешательством в конструкцию последних. Детали нынешнего исследования можно найти в статье http://www.nature.com/nmat/journal/v9/n9/abs/nmat2814.html в Nature Materials, а в видеоролике о нём рассказывает сам Мелош.



Источник:
http://www.membrana.ru/articles/inventions/2010/08/03/152100.html





Поделиться этой страницей в:

Рейтинг статьи
Средняя оценка: 5 из 5. Голосов: 2

Проголосуйте, пожалуйста, за эту статью:
Класс! Очень хорошо! Сойдёт 3-й сорт еще не брак Ерунда
(отлично!)(хорошо)(сойдет)(так себе)(плохо)

Статьи в тему: Прочее (экзотика)
Микрогенератор
 Японцы создали комбинированный сборщик даровой энергии
 Топливные элементы
Мини генераторы, работающие от случайных вибраций  Японцы создали комбинированный сборщик даровой энергии  Игрушечная энергетика


Комментарии к статье

Горячая фотоячейка тянет электроны из коктейля света и жара | 0 Комментариев

Спасибо за проявленный интерес

Вы не можете отправить комментарий анонимно, пожалуйста зарегистрируйтесь.

 
Статьи в тему
Прочее (экзотика)
Топливные элементы
Любовь к электричеству
Мобильная электростанция
Мобильная электростанция (атомная)
Накопитель-генератор для велосипедистов
OHM – прибор для использования велосипеда в качестве зарядного устройства
Портативный микрогенератор
Придуман новый способ получения тока из ходьбы
Зарядник для мобильника
Оригинальный ''зеленый'' зарядник

А Вы знаете, что возможно... ?

 Подписаться на rss рассылку Читать нас через RSS

 Читать нас на Твиттер Читать нас на Твиттер

 Наши новости на e-mail Получать наши новости на e-mail

 Напечатать текущую статью Напечатать текущую статью


Реклама
По вопросам размещения рекламы


Интересно



 

Количество подписчиков на RSS
Загрузка страницы: 0.01 секунды